Information divergence estimation based on data-dependent partitions

نویسندگان

  • Jorge Silva
  • Shrikanth S. Narayanan
چکیده

This work studies the problem of information divergence estimation based on datadependent partitions. A histogram-based data-dependent estimate is proposed adopting a version of Barron-type histogram-based estimate. The main result is the stipulation of sufficient conditions on the partition scheme to make the estimate strongly consistent. Furthermore, when the distributions are equipped with density functions in ðR ,BðRÞÞ, we obtain sufficient conditions that guarantee a density-free strongly consistent information divergence estimate. In this context, the result is presented for two emblematic partition schemes: the statistically equivalent blocks (Gessaman’s data-driven partition) and data-dependent tree-structured vector quantization (TSVQ). & 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Evolutionary Rate Estimation in Bayesian Evolutionary Analysis: Focus on Pathogens

Bayesian evolutionary analysis provide a statistically sound and flexible framework for estimation of evolutionary parameters. In this method, posterior estimates of evolutionary rate (μ) are derived by combining evolutionary information in the data with researcher’s prior knowledge about the true value of μ. Nucleotide sequence samples of fast evolving pathogens that are taken at d...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

An Evaluation of Different Partitioning Strategies for Bayesian Estimation of Species Divergence Times

The explosive growth of molecular sequence data has made it possible to estimate species divergence times under relaxed-clock models using genome-scale data sets with many gene loci. In order to improve both model realism and to best extract information about relative divergence times in the sequence data, it is important to account for the heterogeneity in the evolutionary process across genes...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010